The impacts of changing transport and precipitation on pollutant distributions in a future climate

نویسندگان

  • Yuanyuan Fang
  • Arlene M. Fiore
  • Larry W. Horowitz
  • Anand Gnanadesikan
  • Isaac Held
  • Gang Chen
  • Gabriel Vecchi
  • Hiram Levy
چکیده

[1] Air pollution (ozone and particulate matter in surface air) is strongly linked to synoptic weather and thus is likely sensitive to climate change. In order to isolate the responses of air pollutant transport and wet removal to a warming climate, we examine a simple carbon monoxide–like (CO) tracer (COt) and a soluble version (SAt), both with the 2001 CO emissions, in simulations with the Geophysical Fluid Dynamics Laboratory chemistry‐climate model (AM3) for present (1981–2000) and future (2081–2100) climates. In 2081–2100, projected reductions in lower‐tropospheric ventilation and wet deposition exacerbate surface air pollution as evidenced by higher surface COt and SAt concentrations. However, the average horizontal general circulation patterns in 2081–2100 are similar to 1981–2000, so the spatial distribution of COt changes little. Precipitation is an important factor controlling soluble pollutant wet removal, but the total global precipitation change alone does not necessarily indicate the sign of the soluble pollutant response to climate change. Over certain latitudinal bands, however, the annual wet deposition change can be explained mainly by the simulated changes in large‐scale (LS) precipitation. In regions such as North America, differences in the seasonality of LS precipitation and tracer burdens contribute to an apparent inconsistency of changes in annual wet deposition versus annual precipitation. As a step toward an ultimate goal of developing a simple index that can be applied to infer changes in soluble pollutants directly from changes in precipitation fields as projected by physical climate models, we explore here a “Diagnosed Precipitation Impact” (DPI) index. This index captures the sign and magnitude (within 50%) of the relative annual mean changes in the global wet deposition of the soluble pollutant. DPI can only be usefully applied in climate models in which LS precipitation dominates wet deposition and horizontal transport patterns change little as climate warms. Our findings support the need for tighter emission regulations, for both soluble and insoluble pollutants, to obtain a desired level of air quality as climate warms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty Investigation of Precipitation and Temperature Scenarios for the Sira Basin under Climate Change Impact

Results of assessment of the future climate change impacts is associated with some uncertainties. Considering the range of uncertainties increases reliability of the results. In this study, climate change impacts on daily precipitation, maximum and minimum temperature of Sira basin are assessed using LARS-WG model, for 2036-65 period. Accordingly, uncertainty of new emissions scenarios (RCP2.6،...

متن کامل

Investigation on Climate Change in Meteorological Stations of Guilan Province and its Impacts on Water Balance

Climate has always been changing during the lifetime of the earth, and has appeared in the form of the ice age, hurricanes, severe and sudden temperature changes, precipitation and other climatic elements, and has dramatically influenced the environment, and in some cases has caused severe changes and even destructions. Some of the most important aspects of climate changes can be found in preci...

متن کامل

Modeling Current and Future Potential Distributions of Caspian Pond Turtle (Mauremys caspica) under Climate Change Scenarios

Although turtles are the most threatened taxonomic group within the reptile class, we have a very limited understanding of how turtles respond to climate change. Here, we evaluated the effects of climate changes on the geographical distribution of Caspian pond turtle (Mauremys caspica). We used an ensemble approach by combining six species distribution models including artificial neural network...

متن کامل

Prediction of Prediction of Climate Change Impacts on Kharkeh Dam Reservoir Inflows with Using of CMIP5-RCP Scenarios

The objective of this research was to investigate the effects of climate change on precipitation and temperature parameters of Karkheh Basin and inflow to Karkheh dam reservoir. This was conducted by applying 21 GCM models under CMIP5 scenarios. The error indices of R2, RMSE and MAE models with the observed precipitation and temperature data were examined to find the appropriate GCM model, MRI-...

متن کامل

Using the IHACRES model to investigate the impacts of changing climate on streamflow in a semi-arid basin in north-central Iran

Understanding the variations of streamflow of rivers is an important prerequisite for designing hydraulic structures as well as managing surface water resources in basins. An overview of the impact of climate change on the streamflow in the Hablehroud River, the main river of a semi-arid basin in north-central Iran, is provided. Using the LARS-WG statistical downscaling model, the outputs of Ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011